Physics 216, Quiz 2

December 17, 2012, 90 minutes

1. Find the Fourier Series of the function $f(x)=\left\{\begin{array}{cc}0, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$
2. The Fourier series of the function of period 2 which is equal to x on the interval $(-1,1)$ is given by

$$
f(x)=-\frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} \sin n \pi x
$$

Use this expansion and Parseval theorem to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
3. Given the two recursion relations for Legendre polynomials

$$
\begin{aligned}
& x P_{l}^{\prime}(x)-P_{l-1}^{\prime}(x)=l P_{l}(x) \\
& P_{l}^{\prime}(x)-x P_{l-1}^{\prime}(x)=l P_{l-1}(x)
\end{aligned}
$$

show that

$$
\left(1-x^{2}\right) P_{l}^{\prime}(x)=l P_{l-1}(x)-l x P_{l}(x)
$$

Differentiate this last equation with respect to x and eliminate $P_{l-1}^{\prime}(x)$ to show that

$$
\left(1-x^{2}\right) P_{l}^{\prime \prime}(x)-2 x P_{l}^{\prime}(x)+l(l+1) P_{l}(x)=0
$$

4. Expand the function $f(x)=P_{7}^{\prime}(x)$ in terms of Legendre polynomials. Hint: Use the following recursion relation repeatedly $(2 l+1) P_{l}(x)=P_{l+1}^{\prime}(x)-P_{l-1}^{\prime}(x)$ and $P_{1}(x)=x$.
5. Use the recursion relation for Hermite polynomials

$$
2 x H_{n}(x)=H_{n+1}(x)+2 n H_{n-1}(x)
$$

and orthogonality condition $\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) d x=\delta_{n m} \sqrt{\pi} 2^{n} n!$ to evaluate the integral

$$
\int_{-\infty}^{\infty} x^{2} e^{-x^{2}} H_{n}(x) H_{n}(x) d x=\sqrt{\pi} 2^{n} n!\left(n+\frac{1}{2}\right)
$$

6. (a) Using the definition $P_{l}^{m}(x)=\left(1-x^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d x^{m}} P_{l}(x)$ Show that

$$
P_{l}^{m+1}(x)=\sqrt{1-x^{2}} \frac{d}{d x} P_{l}^{m}(x)+\frac{1}{\sqrt{1-x^{2}}} m x P_{l}^{m}(x)
$$

(b) Define $L_{+}=e^{i \varphi}\left(\frac{\partial}{\partial \theta}+i \cot \theta\right)$ to show that $L_{+} Y_{l}^{m}$ is proportional to Y_{l}^{m+1} using $Y_{l}^{m} \sim$ $e^{i m \varphi} P_{l}^{m}(\cos \theta)$ and the change of variable $x=\cos \theta$.
7. Use the relation $x L_{n}^{k}=(2 n+k+1) L_{n}^{k}-(n+k) L_{n-1}^{k}-(n+1) L_{n+1}^{k}$ to show that

$$
\int_{0}^{\infty} e^{-x} x^{k+1} L_{n}^{k}(x) L_{n}^{k}(x) d x=\frac{(n+k)!}{n!}(2 n+k+1)
$$

using the orthogonality condition $\int_{0}^{\infty} e^{-x} x^{k} L_{n}^{k}(x) L_{m}^{k}(x) d x=\frac{(n+k)!}{n!} \delta_{n m} .$.
8. Find the Fourier transform $F(\omega)$ of the function $f(t)=\left\{\begin{array}{ll}1, & |t|<1 \\ 0, & |t|>1\end{array}\right.$.Use the convolution theorem $\int_{-\infty}^{\infty} f(t) f^{*}(t) d t=\int_{-\infty}^{\infty} F(\omega) F^{*}(\omega) d \omega$ to evaluate the integral $\int_{0}^{\infty} \frac{\sin ^{2} \omega}{\omega^{2}} d \omega$.

